3.1161 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=268 \[ -\frac {(15 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(9 A+5 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{10 a d \sqrt {a \sec (c+d x)+a}}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {(13 A+5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{10 a d \sqrt {a \sec (c+d x)+a}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}} \]

[Out]

-1/2*(A+C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)-1/4*(15*A+7*C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*
sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(3/2)/d*2^(1/2)+1/10*(9*A
+5*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)+1/10*(49*A+25*C)*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/
(a+a*sec(d*x+c))^(1/2)-1/10*(13*A+5*C)*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d/(a+a*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.87, antiderivative size = 268, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.162, Rules used = {4265, 4085, 4022, 4013, 3808, 206} \[ -\frac {(15 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(9 A+5 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{10 a d \sqrt {a \sec (c+d x)+a}}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {(13 A+5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{10 a d \sqrt {a \sec (c+d x)+a}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

-((15*A + 7*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*Sqrt[Cos[
c + d*x]]*Sqrt[Sec[c + d*x]])/(2*Sqrt[2]*a^(3/2)*d) - ((A + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Se
c[c + d*x])^(3/2)) + ((49*A + 25*C)*Sin[c + d*x])/(10*a*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((13*
A + 5*C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(10*a*d*Sqrt[a + a*Sec[c + d*x]]) + ((9*A + 5*C)*Cos[c + d*x]^(3/2)*
Sin[c + d*x])/(10*a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 4013

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[(
a*A*m - b*B*n)/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A
, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]

Rule 4022

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*n), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rule 4085

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(a*f*(
2*m + 1)), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b*(
2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x]
&& EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx\\ &=-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{2} a (9 A+5 C)+a (3 A+C) \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(9 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{4} a^2 (13 A+5 C)-a^2 (9 A+5 C) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx}{5 a^3}\\ &=-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(13 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}+\frac {(9 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {3}{8} a^3 (49 A+25 C)+\frac {3}{4} a^3 (13 A+5 C) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}} \, dx}{15 a^4}\\ &=-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}+\frac {(9 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}-\frac {\left ((15 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}+\frac {(9 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}+\frac {\left ((15 A+7 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=-\frac {(15 A+7 C) \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {(49 A+25 C) \sin (c+d x)}{10 a d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {(13 A+5 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}+\frac {(9 A+5 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.95, size = 118, normalized size = 0.44 \[ \frac {\tan \left (\frac {1}{2} (c+d x)\right ) ((39 A+20 C) \cos (c+d x)-2 A \cos (2 (c+d x))+A \cos (3 (c+d x))+47 A+25 C)-5 (15 A+7 C) \cos \left (\frac {1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac {1}{2} (c+d x)\right )\right )}{10 a d \sqrt {\cos (c+d x)} \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-5*(15*A + 7*C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2] + (47*A + 25*C + (39*A + 20*C)*Cos[c + d*x] - 2*A*
Cos[2*(c + d*x)] + A*Cos[3*(c + d*x)])*Tan[(c + d*x)/2])/(10*a*d*Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]
)

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 468, normalized size = 1.75 \[ \left [\frac {5 \, \sqrt {2} {\left ({\left (15 \, A + 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (15 \, A + 7 \, C\right )} \cos \left (d x + c\right ) + 15 \, A + 7 \, C\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, {\left (4 \, A \cos \left (d x + c\right )^{3} - 4 \, A \cos \left (d x + c\right )^{2} + 4 \, {\left (9 \, A + 5 \, C\right )} \cos \left (d x + c\right ) + 49 \, A + 25 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{40 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac {5 \, \sqrt {2} {\left ({\left (15 \, A + 7 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (15 \, A + 7 \, C\right )} \cos \left (d x + c\right ) + 15 \, A + 7 \, C\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, {\left (4 \, A \cos \left (d x + c\right )^{3} - 4 \, A \cos \left (d x + c\right )^{2} + 4 \, {\left (9 \, A + 5 \, C\right )} \cos \left (d x + c\right ) + 49 \, A + 25 \, C\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{20 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/40*(5*sqrt(2)*((15*A + 7*C)*cos(d*x + c)^2 + 2*(15*A + 7*C)*cos(d*x + c) + 15*A + 7*C)*sqrt(a)*log(-(a*cos(
d*x + c)^2 + 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*c
os(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*(4*A*cos(d*x + c)^3 - 4*A*cos(d*x + c)^2 + 4*(9*
A + 5*C)*cos(d*x + c) + 49*A + 25*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/
(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), 1/20*(5*sqrt(2)*((15*A + 7*C)*cos(d*x + c)^2 + 2*(15*A
+ 7*C)*cos(d*x + c) + 15*A + 7*C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqr
t(cos(d*x + c))/(a*sin(d*x + c))) + 2*(4*A*cos(d*x + c)^3 - 4*A*cos(d*x + c)^2 + 4*(9*A + 5*C)*cos(d*x + c) +
49*A + 25*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 +
2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 2.15, size = 318, normalized size = 1.19 \[ \frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (8 A \left (\cos ^{4}\left (d x +c \right )\right )-75 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )-35 C \sin \left (d x +c \right ) \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )-16 A \left (\cos ^{3}\left (d x +c \right )\right )-75 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, A \sin \left (d x +c \right )-35 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+80 A \left (\cos ^{2}\left (d x +c \right )\right )+40 C \left (\cos ^{2}\left (d x +c \right )\right )+26 A \cos \left (d x +c \right )+10 C \cos \left (d x +c \right )-98 A -50 C \right )}{20 d \,a^{2} \sin \left (d x +c \right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/20/d*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(8*A*cos(d*x+c)^4-75*A*arctan(1/2*
sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)-35*C*sin(d*x+c)*arctan(1
/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)-16*A*cos(d*x+c)^3-75*arctan(1/2*
sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*A*sin(d*x+c)-35*C*arctan(1/2*sin(d*x+c)*(-2/(1
+cos(d*x+c)))^(1/2))*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+80*A*cos(d*x+c)^2+40*C*cos(d*x+c)^2+26*A*cos(d*x+c)+
10*C*cos(d*x+c)-98*A-50*C)/a^2/sin(d*x+c)^3

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: RuntimeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^{5/2}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((cos(c + d*x)^(5/2)*(A + C/cos(c + d*x)^2))/(a + a/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________